Theoretical and numerical aspects for the longtime behavior of nonlinear delay time Caputo fractional reaction–diffusion equations
نویسندگان
چکیده
In this paper, we investigate the longtime behavior of time fractional reaction–diffusion equations with delay. The governing partial differential equation generalizes Hutchinson, Mackey–Glass and Nicholson’s blowflies equations. Energy estimates, asymptotic stability contractivity problem are proved. finite difference technique is used to discretize time-fractional Caputo derivative, spectral Galerkin approach for spatial approximation. Additionally, ability preserve rates can be proved numerical solution similarly as true solution. Finally, some experiments performed confirm our findings.
منابع مشابه
Numerical Methods for Sequential Fractional Differential Equations for Caputo Operator
To obtain the solution of nonlinear sequential fractional differential equations for Caputo operator two methods namely the Adomian decomposition method and DaftardarGejji and Jafari iterative method are applied in this paper. Finally some examples are presented to illustrate the efficiency of these methods. 2010 Mathematics Subject Classification: 65L05, 26A33
متن کاملNumerical Simulations for Variable-order Fractional Nonlinear Delay Differential Equations
In this paper numerical studies for the variable-order fractional delay differential equations are presented. Adams-Bashforth-Moulton algorithm has been extended to study this problem, where the derivative is defined in the Caputo variable-order fractional sense. Special attention is given to prove the error estimate of the proposed method. Numerical test examples are presented to demonstrate u...
متن کاملMaximum principle and numerical method for the multi-term time-space Riesz-Caputo fractional differential equations
The maximum principle for the space and time-space fractional partial differential equations is still an open problem. In this paper, we consider a multi-term time-space Riesz-Caputo fractional differential equations over an open bounded domain. A maximum principle for the equation is proved. The uniqueness and continuous dependence of the solution are derived. Using a fractional predictor-corr...
متن کاملexistence and approximate $l^{p}$ and continuous solution of nonlinear integral equations of the hammerstein and volterra types
بسیاری از پدیده ها در جهان ما اساساً غیرخطی هستند، و توسط معادلات غیرخطی بیان شده اند. از آنجا که ظهور کامپیوترهای رقمی با عملکرد بالا، حل مسایل خطی را آسان تر می کند. با این حال، به طور کلی به دست آوردن جوابهای دقیق از مسایل غیرخطی دشوار است. روش عددی، به طور کلی محاسبه پیچیده مسایل غیرخطی را اداره می کند. با این حال، دادن نقاط به یک منحنی و به دست آوردن منحنی کامل که اغلب پرهزینه و ...
15 صفحه اولExistence of solutions of boundary value problems for Caputo fractional differential equations on time scales
In this paper, we study the boundary-value problem of fractional order dynamic equations on time scales, $$ ^c{Delta}^{alpha}u(t)=f(t,u(t)),;;tin [0,1]_{mathbb{T}^{kappa^{2}}}:=J,;;1
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nonlinear Dynamics
سال: 2022
ISSN: ['1573-269X', '0924-090X']
DOI: https://doi.org/10.1007/s11071-022-07982-7